Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.03.22268599

ABSTRACT

Purpose: We investigated SARS-CoV-2 mRNA vaccine-induced binding and live-virus neutralizing antibody response in NSCLC patients to the SARS-CoV-2 wild type strain and the emerging Delta and Omicron variants. Methods: 82 NSCLC patients and 53 healthy adult volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and live-virus neutralization response to 614D (WT), B.1.617.2 (Delta), B.1.351 (Beta) and B.1.1.529 (Omicron) variants were evaluated by Meso Scale Discovery (MSD) assay and Focus Reduction Neutralization Assay (FRNT) respectively. We determined the longevity and persistence of vaccine-induced antibody response in NSCLC patients. The effect of vaccine-type, age, gender, race and cancer therapy on the antibody response was evaluated. Results: Binding antibody titer to the mRNA vaccines were lower in the NSCLC patients compared to the healthy volunteers (P=<0.0001). More importantly, NSCLC patients had reduced live-virus neutralizing activity compared to the healthy vaccinees (P=<0.0001). Spike and RBD-specific binding IgG titers peaked after a week following the second vaccine dose and declined after six months (P=<0.001). While patients >70 years had lower IgG titers (P=<0.01), patients receiving either PD-1 monotherapy, chemotherapy or a combination of both did not have a significant impact on the antibody response. Binding antibody titers to the Delta and Beta variants were lower compared to the WT strain (P=<0.0001). Importantly, we observed significantly lower FRNT50 titers to Delta (6-fold), and Omicron (79-fold) variants (P=<0.0001) in NSCLC patients. Conclusions: Binding and live-virus neutralizing antibody titers to SARS-CoV-2 mRNA vaccines in NSCLC patients were lower than the healthy vaccinees, with significantly lower live-virus neutralization of B.1.617.2 (Delta), and more importantly, the B.1.1.529 (Omicron) variant compared to the wild-type strain. These data highlight the concern for cancer patients given the rapid spread of SARS-CoV-2 Omicron variant.


Subject(s)
Neoplasms , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung
2.
Cell Host Microbe ; 29(4): 516-521.e3, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1141671

ABSTRACT

The emergence of SARS-CoV-2 variants with mutations in the spike protein is raising concerns about the efficacy of infection- or vaccine-induced antibodies. We compared antibody binding and live virus neutralization of sera from naturally infected and Moderna-vaccinated individuals against two SARS-CoV-2 variants: B.1 containing the spike mutation D614G and the emerging B.1.351 variant containing additional spike mutations and deletions. Sera from acutely infected and convalescent COVID-19 patients exhibited a 3-fold reduction in binding antibody titers to the B.1.351 variant receptor-binding domain of the spike protein and a 3.5-fold reduction in neutralizing antibody titers against SARS-CoV-2 B.1.351 variant compared to the B.1 variant. Similar results were seen with sera from Moderna-vaccinated individuals. Despite reduced antibody titers against the B.1.351 variant, sera from infected and vaccinated individuals containing polyclonal antibodies to the spike protein could still neutralize SARS-CoV-2 B.1.351, suggesting that protective humoral immunity may be retained against this variant.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Binding Sites , COVID-19/prevention & control , Humans , Neutralization Tests , Receptors, Virus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL